- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Parsa, Shima (3)
-
Santanach-Carreras, Enric (2)
-
Weitz, David A. (2)
-
Xiao, Lizhi (2)
-
Amir, Ariel (1)
-
Izaguirre, Michael (1)
-
Morris, Eliza J. (1)
-
Zareei, Ahmad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Emergence of preferential flow paths and intermittent dynamics in emulsion transport in porous mediaEmulsions injected into 2D porous media flow through pores with higher local velocities without being selective about the size of the pores they encounter, leading to the trapping of a large number of them and the formation of preferential paths.more » « less
-
Parsa, Shima; Zareei, Ahmad; Santanach-Carreras, Enric; Morris, Eliza J.; Amir, Ariel; Xiao, Lizhi; Weitz, David A. (, Physical Review Fluids)Polymer retention from the flow of a polymer solution through porous media results in substantial decrease of the permeability; however, the underlying physics of this effect is unknown. While the polymer retention leads to a decrease in pore volume, here we show that this cannot cause the full reduction in permeability. Instead, to determine the origin of this anomalous decrease in permeability, we use confocal microscopy to measure the pore-level velocities in an index-matched model porous medium.We show that they exhibit an exponential distribution and, upon polymer retention, this distribution is broadened yet retains the same exponential form. Surprisingly, the velocity distributions are scaled by the inverse square root of the permeabilities. We combine experiment and simulation to show these changes result from diversion of flow in the random porous-medium network rather than reduction in pore volume upon polymer retention.more » « less
-
Parsa, Shima; Santanach-Carreras, Enric; Xiao, Lizhi; Weitz, David A. (, Physical Review Fluids)
An official website of the United States government
